Numpy mean, variance, standard deviation, sum, prod. (about axis)
No panic, just quick note after daily challenges via https://www.hackerrank.com/ . A straightforward way to understand axis.
Ignore those text when you’ve already master of numpy.
mean
The mean tool computes the arithmetic mean along the specified axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.mean(my_array, axis = 0) #Output : [ 2. 3.]
print numpy.mean(my_array, axis = 1) #Output : [ 1.5 3.5]
print numpy.mean(my_array, axis = None) #Output : 2.5
print numpy.mean(my_array) #Output : 2.5
By default, the axis is None
. Therefore, it computes the mean of the flattened array.
var
The var tool computes the arithmetic variance along the specified axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.var(my_array, axis = 0) #Output : [ 1. 1.]
print numpy.var(my_array, axis = 1) #Output : [ 0.25 0.25]
print numpy.var(my_array, axis = None) #Output : 1.25
print numpy.var(my_array) #Output : 1.25
By default, the axis is None
. Therefore, it computes the variance of the flattened array.
std
The std tool computes the arithmetic standard deviation along the specified axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.std(my_array, axis = 0) #Output : [ 1. 1.]
print numpy.std(my_array, axis = 1) #Output : [ 0.5 0.5]
print numpy.std(my_array, axis = None) #Output : 1.11803398875
print numpy.std(my_array) #Output : 1.11803398875
By default, the axis is None
. Therefore, it computes the standard deviation of the flattened array.
sum
The sum tool returns the sum of array elements over a given axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.sum(my_array, axis = 0) #Output : [4 6]
print numpy.sum(my_array, axis = 1) #Output : [3 7]
print numpy.sum(my_array, axis = None) #Output : 10
print numpy.sum(my_array) #Output : 10
By default, the axis value is None
. Therefore, it performs a sum over all the dimensions of the input array.
prod
The prod tool returns the product of array elements over a given axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.prod(my_array, axis = 0) #Output : [3 8]
print numpy.prod(my_array, axis = 1) #Output : [ 2 12]
print numpy.prod(my_array, axis = None) #Output : 24
print numpy.prod(my_array) #Output : 24
By default, the axis value is None
. Therefore, it performs the product over all the dimensions of the input array.